

## II Semester B.C.A. Degree Examination, May 2017 (F + R) (CBCS) (2014-15 and Onwards) COMPUTER SCIENCE BCA - 203 : Data Structures

Time: 3 Hours

Max. Marks: 70

Instruction: Answerall Sections.

## SECTION - A

Answer any ten questions. Each question carries two marks.

 $(10 \times 2 = 20)$ 

- 1. What is linear data structure? Give an example.
- 2. Define space and time complexities of an algorithm.
- 3. What is recursion?
- 4. What is dynamic memory allocation?
- 5. Define stack.
- 6. Compare linear search and binary search methods.
- 7. What is circular queue?
- 8. Write the differences between stack and queue.
- 9. Give the node structure of a doubly linked list.
- 10. Define the terms:
  - i) Binary tree.
  - ii) Complete binary tree.
- 11. Mention the different ways of tree traversal.
- 12. Mention the graph traversal methods.

## SECTION-B

| P   | nsı  | wer any five questions. Each question carries ten marks.                   | 5×10=50 |
|-----|------|----------------------------------------------------------------------------|---------|
| 13  |      | Explain various types of data structures.                                  | 6       |
|     |      | Briefly explain any four string handling functions.                        | 4       |
|     |      | Explain selection sort algorithm.                                          | 5       |
|     |      | Write an algorithm to delete an element from the array.                    | 5       |
|     |      | Define linked list. Mention the applications of the linked list.           | 5       |
|     |      | Write an algorithm for searching a node in the singly linked list.         | 5       |
| 16  |      | Mention various applications of the stack.                                 | 5       |
|     | b)   | Evaluate the following postfix expression                                  |         |
|     |      | 95 + 36 * + 97 – 1.                                                        | 5       |
| 17. | . a) | Write C functions to perform insertion and deletion operations of a queu   | ie. 5   |
|     | b)   | What is queue? Mention its underflow and overflow conditions.              | 5       |
| 18. |      | Briefly explain infix, prefix and postfix expressions.                     | 5       |
|     | b)   | Convert the following infix expression into its equivalent postfix express | sion    |
|     |      | (a + b) * (m/n) + (x + y).                                                 | 5       |
| 19. | a)   | Define the terms (a) Graph (b) Degree of a vertex.                         | 4       |
|     | b)   | Write depth-first-search algorithm.                                        | 6       |
| 20. | a)   | Define Binary search tree. Give an example.                                | 4       |
|     |      | Briefly explain various tree traversal methods with suitable examples.     | 6       |